Un estudio desarrollado por investigadores de la Universitat Politècnica de València (UPV), pertenecientes al grupo BDSLab-ITACA y al Instituto de Matemática Pura y Aplicada (IUMPA), se ha convertido en uno de los trabajos de referencia internacional para la aplicación de la Inteligencia Artificial de forma confiable al seguimiento y gestión de la COVID19.
Publicado en el Journal of the American Medical Informatics Association, en el artículo, el equipo de la UPV demuestra las limitaciones que la variabilidad o heterogeneidad de datos, cuando éstos provienen de múltiples fuentes como, por ejemplo, de varios hospitales o países, pueden tener para la aplicación de la Inteligencia Artificial de forma fiable. El equipo de la UPV expone también, las claves de potenciales soluciones a estas limitaciones. Además, partiendo de su estudio, ha desarrollado nuevas herramientas que ayudan a describir y clasificar a los pacientes con COVID-19.
“Los resultados de nuestro estudio y de la aplicación de estas herramientas pueden ayudar potencialmente en la evaluación clínica del paciente y facilitar la clasificación temprana automatizada -por nivel de riesgo- antes del ingreso hospitalario y tras el mismo. Incluso pueden ayudar a planificar la asignación de recursos, favoreciendo especialmente a aquellos pacientes que vayan a ser ingresados en la UCI”, apunta Carlos Sáez, investigador del grupo BDSLab-ITACA de la Universitat Politècnica de València y coordinador del estudio.
Lee la noticia al completo en este enlace